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A time domain computational approach is applied to predict the acoustic performance
of multiple pass silencers with perforated tube sections. This non-linear, one-dimensional
method may readily include temporal and spatial variations in sound pressure level, orifice
flow velocities, and mean duct flow, all of which affect the local orifice behaviour of
perforated tube elements, and therefore the overall noise reduction characteristics. The
transmission loss of two anechoically terminated multiple pass muffler configurations is
determined computationally and experimentally for the limiting case of low sound pressure
levels and zero mean flow. Comparisons between the numerical results and experimental
data are shown to correlate well for frequencies where the one-dimensional assumption is
justified.
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1. INTRODUCTION

The silencing components used to reduce the sound radiated from automotive intake and
exhaust systems often employ one or more perforated tube segments. For some elements,
the overall structure may be complex enough to require a detailed, three-dimensional
model to determine its general noise attenuation. However, for many practical
configurations the relatively long wavelengths of the noise generated by the engine intake
and exhaust processes allow simplified analyses. If the wavelength is much longer than any
characteristic silencer dimension, a zero-dimensional, or lumped analysis, is valid and
presents the least amount of difficulty. For an automotive silencer, zero-dimensional
models may provide some insight at very low frequencies, but accuracy decreases rapidly
with increasing frequency. Significant improvement from a lumped approach may be
obtained by considering one-dimensional flow in the various silencer duct passages that
communicate through the perforated interfaces. This coupled one-dimensional method is
useful for low frequency acoustic analysis of many realistic silencer designs characterized

† An earlier and abbreviated version of this work was presented at the 1996 International Congress and
Exposition of the Society of Automotive Engineers, February 26–29, 1996, Detroit, Michigan.
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by perforated tubes that are axially aligned within an external duct having a length that
is substantially longer than any cross dimension. At higher frequencies, where the
wavelength is not much longer than any cross dimension, or for very complex geometries,
a coupled one-dimensional approach is no longer justified and multidimensional
techniques need to be used.

The response of a perforated tube silencer is affected by the overall geometric structure,
including duct porosities and orifice locations, and the perforate dynamics. The behavior
of a perforated interface is usually presented in terms of a perforate impedance, Zp,f , a
frequency domain parameter given by

Zp,f =Dpp,f /Up,f , (1)

where Dp is the acoustic pressure difference, U is the area averaged velocity and the
subscripts p and f refer to the perforate and fundamental frequency, respectively. It is well
known that the dynamics of unsteady flow through an orifice are dependent on a number
of local fluid-dynamic parameters in addition to the specific orifice geometry. Clearly the
physical fluid properties (density, viscosity, etc.) are significant. Furthermore, the
magnitude of the throughflow (mean plus oscillating), which is strongly coupled with the
average pressure difference and sound pressure level across the perforate, causes drastic
changes in the orifice behavior. Finally, the amount of grazing (axial duct) flow on either
side of the perforate alters the local orifice dynamics.

For the conditions present in an automotive silencer, it is most likely that the perforated
sections will exhibit non-linear behavior. For example, with zero mean flow, orifice
non-linearity is observed at sound pressure levels on the order of 120–130 dBre 20 mPa [1], well
below the levels accepted to be linear in one-dimensional duct acoustics and much lower
than the magnitudes experienced in typical automotive intake and exhaust systems.
Moreover, the values of fluid properties, acoustic pressure and bulk fluid flow can vary
with both time and location. Since the perforate behavior depends on these parameters,
it is reasonable to expect significant non-linearity at the perforate interfaces.

A number of studies have employed a coupled one-dimensional approach to study
perforated tube geometries by using a linear wave equation to model the duct flows. The
majority of these methods have been frequency domain approaches. Sullivan and Crocker
[1] examined the acoustic performance of perforated concentric tube resonators under
linear orifice conditions. Later Sullivan [2] analyzed one and two pass geometries using
an iterative segmentation approach which has a much broader applicability, since it allows
for spatial changes in the perforate impedance. However, the mean values of orifice and
duct flow, need to be specified a priori. Analytical [3, 4] and numerical [5] decoupling
techniques have also been applied to perforated tube geometries. In the analytical
decoupling techniques, the perforate impedance and mean duct flow are assumed to be
constant along a particular duct. The numerical decoupling approach of Peat [5] allows
orifice impedances and mean flow to vary along a duct, although the mean flow must
change linearly. Results for these decoupling analyses were presented for one and two pass
silencers. Correlation between the foregoing frequency domain techniques and
experimental data is generally quite good, provided that the geometry and flow conditions
are consistent with the underlying assumptions of the particular method. As an alternative
to frequency domain approaches, Chang and Cummings [6] have applied a numerical
time-domain technique that uses a finite-difference approximation of the linearized
one-dimensional wave equation in the main ducts, which may communicate via a
non-linear orifice model. Since the solution proceeds in the time domain, temporal and
spatial changes in orifice behavior may be accounted for. They obtained good correlation
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Figure 1. Measured sound pressure levels at different engine speeds for the exhaust system locations in Table 1:
——, 1000 r.p.m; -----, 3000 r.p.m.; — —, 5000 r.p.m.; W, right bank; w, left bank.

between computational and experimental results for high amplitude, non-harmonic wave
propagation through a single pass resonator.

It is apparent that the analysis of a perforated tube silencer by itself can be a difficult
task. For silencers placed in an internal combustion engine intake or exhaust system, this
difficulty is compounded by a number of other factors. To determine accurately the sound
radiated from any system, the source must be modelled accurately. For an automotive
engine, this includes the highly non-linear processes taking place in the vicinity of the
valves. In addition, flow losses created by the duct systems and silencers affect the
backpressure (or inlet pressure) seen at the valve, and therefore modify the source
characteristics. The experimental data shown in Figures 1 and 2 illustrate additional
problems encountered when attempting to determine radiated sound levels of automotive
engines. The variations in sound pressure level and mean temperature at wide open throttle
conditions are shown for a Ford 1992 3.0L V-6 (Taurus) engine and production exhaust
system. The data presented here are part of the experimental study by Selamet et al. [7].
In this system, the exhaust flows from the right and left banks are initially separate as
the combustion products from three cylinders are combined in the manifold and sent
through a short passage to a catalytic converter. Shortly after the catalytic converters, the

Figure 2. Measured mean temperatures at different engine speeds for the exhaust system locations in Table 1.
Key as for Figure 1.
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T 1

Measurement location descriptions

Location Description Location Description

1 Cylinder 1 primary runner 10 L.B. Catalytic converter exit
6 Cylinder 6 primary runner 11 Resonator inlet
7 R.B. manifold exit 12 Resonator exit
7a R.B. catalytic converter inlet 15 Muffler inlet
8 L.B. manifold exit 16 Muffler exit
8a L.B. catalytic converter inlet 17 Surge tank
9 R.B. catalytic converter exit

right and left exhaust pipes merge into a single duct. After the exhaust flows merge, the
fluid is passed through a small resonator, followed by another section of tubing and then
the muffler. Beyond the muffler is a short tailpipe section connected to a large surge tank,
implemented to dampen pressure oscillations in place of an expansion to ambient.
Measurement locations are described in Table 1, where R.B. and L.B. denote the right and
left engine banks, respectively.

The overall sound pressure levels for the locations described in Table 1 are depicted in
Figure 1. These values are obtained from the measured time-domain data as

SPL(dB)=10 log10 $ 1
Dt g

t+Dt

t 0p− p̄
pref 1

2

dt% , (2)

where Dt is the time period for one complete engine cycle (two revolutions), p̄ is the average
pressure at the sampling point, and pref =20 mPa. At locations upstream of the catalytic
converters, SPL values range from approximately 167 dB to well over 180 dB. Oscillations
of this magnitude would indicate that non-linear effects may also be significant in the
interactions between the main runners in addition to the processes occurring at the valve.
Inlet sound pressure levels of approximately 164–166 dB and 154–161 dB for the resonator
and muffler, respectively, show that the perforated components in these elements are
almost certainly acting in a non-linear fashion, although grazing flow and perforate
throughflow will affect their response and require additional consideration.

In the exhaust system, the speed of sound (or, equivalently, the wavelength of a given
frequency) at a point will mainly depend on the local temperature. Figure 2 shows the
variation in mean temperature with both distance from the exhaust port and engine speed.
For the 1000 r.p.m. case, the mean temperature varies from approximately 825 to 500 K
between locations 1 and 16. With respect to the primary runner, the relative change in the
mean speed of sound between these locations is approximately

Dc16−1/c1 2zT16/T1 −1=−0·22, (3)

resulting in a 22% shift in the wavelength of a specific frequency component. The large
differences seen in the temperature at a fixed location for different engine speeds also
require consideration.

For approaches using linearized equations to analyze unsteady duct flows, the
applicability to an overall intake or exhaust system becomes questionable. Moreover, these
approaches require a fixed source boundary condition, such as an input waveform or
source impedance to represent the engine (see, for example, Gupta and Munjal [8]).
Therefore changes in the system design which affect the flow through the valves (by
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changing backpressure or system dynamics) may only be included externally and require
separate analytical techniques. The complexity and numerous non-linearities observed in
automotive intake and exhaust systems suggests the need for a method that can accurately
model these phenomena. Non-linear one-dimensional techniques have proven useful for
predicting intake and exhaust system flows in the ducts of automotive engines [9–12]. These
techniques have mainly been used to study the effects of intake and exhaust system
geometry on engine performance parameters (volumetric efficiency, power, etc.), although
some simple silencers have been considered. More recently, analysis of single pass
perforated tube geometries for low sound pressure levels and zero mean flow has been
performed [13, 14].

The objective of the current study is to apply a non-linear fluid dynamic model to predict
the transmission loss of multiple pass perforated tube silencers a typical example of which
is shown in Figure 3. The multiple pass geometries, selected to be more representative of
realistic mufflers, are modelled under low sound pressure level and zero mean flow
conditions. The numerical method employed is an extension of the non-linear,
one-dimensional finite difference scheme used by Chapman et al. [11]. In an earlier work
[14] this technique was applied to model single pass perforated tube silencers under zero
mean flow and low sound pressure level conditions. Good agreement was obtained with
experimental results for both short and long concentric tube resonators. Since the
technique is applicable to practically any geometry, provided that one-dimensional flow
is justified, it can be used to model the entire intake and exhaust system, accounting for
variations in flow dynamics that are dependent on the engine, manifold and silencer
configurations. In addition, the computational program connects the ducts, perforated
tubes and volumes which comprise the silencer in a modular fashion, so that multiple pass
element models are readily described in a program input file.

Though the numerical technique is applicable for the numerous non-linearities observed
in automotive intake and exhaust systems, the present study is restricted to the low sound
pressure level, zero mean flow regime. This limit is chosen to allow comparisons between
the computational results and the experimental data for multiple pass perforated tube
elements in an anechoically terminated impedance tube test facility.

2. DUCT NUMERICS

The governing balance equations of mass, momentum and internal energy for an
unsteady, compressible flow may be expressed as

1r/1t+9 · (rU� )=0, (4)

Figure 3. Geometry of the test muffler.
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Figure 4. Nomenclature and control volume used for application of momentum equation to a single orifice.

(1/1t)(rU� )+9 · (rU� U� )+9p−9 · t� =0, (5)

(1/1t)(re)+9 · (rU� e)+ p9 · U� − t� : 9U� +9 · q� =0, (6)

where r is density, U is velocity, p is pressure, t� is the shear stress tensor, e is the specific
internal energy and q is the heat flux. The ideal gas equation of state,

p=(g−1)re, (7)

where g is the ratio of specific heats, is used to relate the thermodynamic variables and
close the system of equations. Equations (4)–(7) are discretized for one-dimensional flow
in ducts of variable cross-section by employing the explicit finite difference method of
Chapman et al. [11] as discussed by Selamet et al. [15]. Since the numerical treatment of
the duct flows is essentially unchanged by the incorporation of perforate communication,
the following description will focus only on the orifice flow treatment in the model. Details
of the one-dimensional duct numerics may be found in references [11] and [15].

For the perforate interface model, it is assumed that the locally incompressible orifice
flows act independently. Application of the y-direction momentum equation to a single
orifice, as shown in Figure 4 yields, in integral form,

d
dt gCV

rUy dV=(pi − p0)Ap −gCS

ty dA−gCS

rUy (U� · n̂) dA, (8)

where the subscripts CV and CS denote the control volume and control surface,
respectively, Ap is the orifice area and n̂ is the unit outward normal vector. For low sound
pressure levels and zero mean flow, the convective term on the right side of equation (8)
may be neglected, resulting in a balance between the inertial, pressure and viscous forces
as

d
dt gCV

rUy dV=(pi − p0)Ap −gCS

ty dA. (9)

Equation (9) is further simplified to

Meq dUp /dt=(pi − p0)Ap −RUpAp , (10)
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where the coefficients Meq and R represent an equivalent mass and equivalent resistance,
respectively. Division by Ap yields the expression employed in the current model as

rleq dUp /dt= pi − p0 −RUp , (11)

where leq =Meq /Ap is an equivalent length for the orifice. This treatment is equivalent to
the work of Sullivan and Crocker [1], although the solution proceeds in the time domain
rather than being determined in the frequency domain. In contrast to the frequency domain
approaches, the values for the effective length leq and flow resistance R may be determined
from the instantaneous local fluid dynamics, and therefore may vary with position and
time.

Due to the complexity of the unsteady flow through an orifice, analytical
approximations for leq and R only exist for the simplest of conditions. Consequently,
empirical data is generally required. Although a number of experimental studies have been
performed to analyze the effects of high sound pressure levels, mean throughflow and
grazing flow [16–20], the findings are almost exclusively presented in terms of a non-linear
orifice impedance referenced to a single excitement frequency. Therefore these results may
only be used approximately to determine the variable coefficients R and leq for arbitrary
input waveforms. Cummings [16] has presented an essentially equivalent orifice flow model
incorporating variable coefficients for the case of zero mean flow and no grazing flow. In
addition, Chang and Cummings [6] employed frequency domain experimental data in a
time domain approach to model a single pass concentric tube resonator under multiple
frequency excitation. For the limiting case considered here, leq and R are assumed constant
and are taken from reference [1].

The numerical model employs a staggered mesh that divides a duct into cells with vector
quantities located at node points and scalar quantities at cell midpoints. For a given
computational cell containing perforations, the orifice area and perforate flow are assumed
to be evenly distributed over the wall area. Figure 5 depicts the reduction of a single pass
perforated tube silencer into inner and outer control volumes and shows the variable
centering used. In the numerical model, equation (11) is approximated as

rnleq (Un+1
p −Un

p )/Dt= pn
i − pn

0 −RUn
p , (12)

Figure 5. Physical element reduction and variable centering for the numerical technique.
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Figure 6. Transmission loss for a ‘‘short’’ concentric resonator (d1 =5·08 cm; d2 =7·62 cm; le =6·67 cm;
s=0·037): ——, experiment; W, model.

where the superscript n denotes the timestep. Once the updated perforated velocity is
calculated from equation (12), the mass and internal energy fluxes through the orifice are
computed using upwind differencing.

3. RESULTS

The computational model has been applied to a number of perforated tube silencers,
consisting of both single and multiple pass geometries. One particular configuration, the
single pass concentric tube resonator, has received much attention due to its practical
significance and relatively simple geometry [1–4, 6, 13, 14, 21]. For comparative purposes,
the experimental and computational results for two such configurations are included here.
The geometries considered are evenly perforated over the central tube (see inset Figure 6),
and have dimensions consistent with the ‘‘short’’ and ‘‘long’’ resonators considered in more
detail by Sullivan and Crocker [1], as shown in Table 2. Figures 6 and 7 compare the results
of the numerical model with experimental data for the short and long resonators,
respectively. For both geometries, the predictions from the numerical model are in close
agreement with experimental data.

The geometry of the first multi-pass test muffler, a three pass configuration, is shown
in Figure 3. In this silencer, the fluid travels along the entrance duct to the first end
chamber, reverses direction and travels to the second end chamber through the pass tube,
and reverses direction once more prior to leaving the muffler in the exit tube. Travelling
oscillations in all three ducts communicate with the outer cavity over the central section
of the muffler. The three interior ducts have an outer diameter of 5·08 cm and a 0·08 cm
wall thickness, while the external casing is fabricated from a 16·51 cm inner diameter

T 2

Geometry of short and long resonators

Resonator le (cm) d1 (cm) d2 (cm) twall (cm) Porosity (s) dorifice (cm)

Short 6·67 5·08 7·62 0·079 0·037 0·249
Long 25·72 5·08 10·15 0·079 0·020 0·249
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Figure 7. Transmission loss for a ‘‘long’’ concentric resonator (d1 =5·08 cm; d2 =10·15 cm; le =25·72 cm;
s=0·020): ——, experiment; W, model.

polycarbonate tube. The end chambers are separated from the 25·5 cm long central cavity
by 1·27 cm thick baffles, and have volumes of 831 cm3 and 892 cm3. Interior duct porosities
of 4·8% were created by drilling 400 holes of 0·249 cm diameter in each duct over the
central region. To account for the local multidimensional effects at the expansion from the
central tubes to the end chambers, a small end correction is necessary. For simplicity, the
end correction is determined from the work of Ingard [22] for concentric Helmholtz
resonators as

d=0·425dp01−1·25
dp

dV1 , (13)

where dp and dV are the pipe and cavity diameters, respectively.
Computational results for the three pass silencer are compared to experimental data in

Figure 8. Correlation between the model and experiment is satisfactory up to
approximately 1000 Hz, where multidimensional effects become significant. Note that this
frequency is slightly lower than the limit for continuous propagation of the first diametral
mode in a circular duct, given by ffirst diametral mode =1·84c0/pdmax =1220 Hz, for a speed of
sound of 344 m/s in air at atmospheric conditions. Some discrepancy between the model
and experiment is also seen at frequencies below 150 Hz, which may be attributed to slight
imperfections in the experimental facility anechoic termination. The overall behavior is
similar to an expansion chamber with a superimposed resonance near 450 Hz. Since the
central section is effectively an expansion chamber, it appears that the end chambers are
behaving as Helmholtz resonators (the end chamber volumes are very similar, so both
should resonate at approximately the same frequency). Assuming the two pipes attached
to an end chamber act synchronously, and using an average of the two end volumes, the
effective neck length necessary for a resonance frequency of 450 Hz is approximately
6·4 cm. If the perforations are assumed to be transparent, and equation (13) is applied at
both ends of the baffle, the effective neck length is

l0 +2d=4·44 cm, (14)
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Figure 8. Transmission loss of three pass muffler: ——, experiment; --W--, model.

where l0 is the axial distance between the volume side of the baffle and the first row of
orifices. Therefore, the perforated sections do not repress the interaction between the end
volumes and central chamber substantially, but show their presence by augmenting the
effective neck length.

The sensitivity of perforated tube silencers to variations in porosity is demonstrated in
Figure 9, which shows the computed transmission loss of the three pass muffler for three
different duct porosities. The highest porosity shown (5%) is very close to the value for
the fabricated geometry, and therefore has essentially the same behavior seen in Figure
8. As the porosity is reduced, the inhibited communication between the end chambers and
the central cavity becomes more noticeable. This effect causes a reduction of the resonance
frequency (or, equivalently, an increase in the effective neck length) accompanied by a
decrease in the transmission loss magnitude near the resonance frequency. As expected,
the deviations from the expansion chamber behavior increase as the porosity is reduced.
The departure from an overall dome-like behavior is most prevalent for the 1% porosity

Figure 9. Predicted transmission loss of three pass muffler for different porosities: ——, s=0·01; · · · ·,
s=0·03; – – –, s=0·05.
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Figure 10. Transmission loss of two pass cross-flow muffler: ——, experiment; --W-, model.

case, which shows a noticeable shift of the transmission loss minimum near 825 Hz,
followed by a secondary peak much sharper and of greater magnitude than the higher
porosity cases.

The second multi-pass geometry considered in the study is a two pass cross flow element.
To create this configuration, the three pass muffler was modified by removing the pass tube,
sealing the holes in the baffles where the pass tube was removed, and sealing the ends of
the inlet and exit ducts. These changes allow the inlet and exit ducts to communicate over
the central cavity, and remove the end chambers entirely. Though this created a simpler
silencer, asymmetry of the structure actually increased somewhat, so multidimensional
effects should be expected to occur at or slightly below the limiting frequency of the first
muffler. Figure 10 compares the model predictions with experimental results for this
configuration. Multidimensional effects are seen to become significant near 900 Hz, below
which the behaviour shows the repeating broadband domes of a simple expansion
chamber. Assuming the perforated tubes to be transparent, the chamber has an expansion
ratio of m=11·27 and length le =25·5 cm. Therefore the domes should have a maximum
value of 10 log10(1+0·25(m−1/m)2)=15·1 dB, and repeat at intervals of Df= c0/
2le =674 Hz, which are very close to the data for the first dome in Figure 10. Since the
model assumes one-dimensional fluid motion, it continues to predict an expansion
chamber behavior beyond 900 Hz, as expected.

4. CONCLUDING REMARKS

A one-dimensional, finite difference numerical solution of the fundamental balance
equations for unsteady, compressible flow has been shown to accurately predict the
attenuation of sound in multiple pass perforated tube silencer elements. This method
avoids many of the restrictions that are inherent in frequency domain techniques. Although
the present study considers acoustic disturbances in a quiescent medium only, the method
is capable of treating high sound pressures and complex flow fields, including shock waves,
provided that the one-dimensional assumption is justified and a suitable model for
perforate flow is incorporated. Although diametral modes will not continuously propagate
along a duct at frequencies below pd/l=1·841, and this expression is commonly used to
determine the upper frequency limit of one-dimensional approaches, it has been shown that



. .   .446

multidimensional behavior may become significant at slightly lower frequencies for fairly
complex perforated tube systems. Since the geometries considered are more representative
of exhaust system silencers, a 900 Hz upper frequency limit determined at atmospheric
conditions is rather conservative. For example, scaling the upper limit with respect to a
speed of sound of approximately 450 m/s in the exhaust gas (based on a gas temperature
of 500 K, roughly corresponding to the muffler conditions at 1000 r.p.m. in Figure 2),
shows that the one-dimensional assumption is valid for modelling the above mufflers to
frequencies of about 1180 Hz. This limit is high enough to include the firing fundamental
and first few harmonics of most engines even at relatively high speeds (for example, a
six-cylinder engine running at 5000 r.p.m. has a firing fundamental of 250 Hz). A number
of studies are available on the analysis of flow through orifices under various conditions,
including high sound pressure levels, through-flow and grazing flow [18, 23]. Work is
currently in progress to incorporate these factors in the present perforate model. The
non-linear, time-domain approach is expected to be useful for a wide range of applications,
including complex geometries, non-linear flow phenomena and entire engine intake and
exhaust systems.
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NOMENCLATURE

A area
c speed of sound
CS control surface
CV control volume
d diameter
e specific internal energy
f frequency
k = 2pf/c0, wavenumber
l length
m expansion ratio
M mass
p pressure
q heat transfer rate
R perforate flow resistance
t time
T temperature
U velocity
V volume
x rectangular co-ordinate
y rectangular co-ordinate
Z impedance

Greek Symbols

g ratio of specific heats
d end correction
D difference
l wavelength
r density
s porosity
t� shear stress tensor

Subscripts

e expansion chamber
eq equivalent
i inner
f frequency
max maximum



. .   .448

o outer
0 mean value
p perforate
ref reference
V volume
y y-direction

Superscripts

n timestep


